在线客服

在线客服
点击这里给我发消息
var swf_width='100%'; var swf_height='515'; var configtg='0xffffff:文字颜色|2:文字位置|0x000000:文字背景颜色|30:文字背景透明度|0xffffff:按键文字颜色|0x4f6898:按键默认颜色|0x000033:按键当前颜色|8:自动播放时间|3:图片过渡效果|1:是否显示按钮|_blank:打开新窗口'; var files='/upLoad/slide/month_1606/201606231534283953.jpg|/upLoad/slide/month_1606/201606231535068026.jpg|/upLoad/slide/month_1606/201606231535165119.jpg|'; var links='|||'; var texts='||'; var texts='' ; document.write(''); document.write(''); document.write(''); document.write(''); document.write(''); document.write(''); document.write(''); document.write('');

新闻资讯

您现在的位置是:首页>> 新闻资讯

轴流风机问题的简单总结

作者:更新时间:2017-06-19 13:07:28浏览次数:
0

设计支撑动刚度较弱

大容量轴流风机重量、外形尺寸增加较多,而支撑材料往往比较薄弱。风机多采用3水泥座支撑方式,即进气箱支腿、下机壳支腿、扩散筒支腿分别支撑在3个水泥座上,每个水泥基座高度较高,横截面积不足,横向刚度较差,易引起较大的风机横向振动,尤其在风机负荷较高时,风机转子传递到基座上的作用力增大,振幅则更大。

在没有异常激振源的情况下,设计支撑结构刚度弱导致的振动主要以工频为主。支撑结构的基础、支腿、壳体振幅较接近,且由上到下均匀减小,但支撑结构整体振动较大,主要表现在水平方向,而垂直及轴向振动一般较小。一般通过动平衡或者加固支撑基础,可降低转子激振力,从而降低风机振动水平。

连接松动

轴流风机壳体下部通过支腿与水泥基座连接,左右通过一圈螺栓与进气箱、扩散筒连接,上、下半筒之间通过两排螺栓连接,轴承座固定在下半壳体上。由于轴流风机壳体连接部位较多,在长期运行中易出现紧力不足、连接松动的情况,而且部分轴流风机连接松动引起的振动会非常大,尤其是壳体共振频率与工作转速较为接近时,连接松动往往导致壳体固有频谱偏移,产生共振,振动被进一步放大。如风机壳体与左右风道壳体连接螺栓出现局部松动时,壳体振幅可以放大1倍多,而壳体松动产生共振时,甚至可以出现1个数量级的振动差别,部分大容量机组的轴流风机下支撑采用弹簧基础,长时间运行后,出现基础沉降不均,也会导致支撑动刚度明显不足,产生明显振动。

风机连接松动引起支撑动刚度弱产生的振动,一般采用现场紧固排除。此类振动以工频为主,随负荷变化有一定波动,松动接触面差异振动明显,一般应首先紧固各连接面螺栓,有滑动支腿的则紧固、垫实支腿,然后测试各接触面振动的差异,并对比其紧固前后的振动情况,以排查是否存在连接松动问题。

局部共振

由于轴流风机的结构特点,其在转速频率及叶片通过频率附近的固有频率较大,很容易产生局部共振。如风机各支腿、上下壳体、支撑板、叶片等均有1到几个固有频率,有些叶片通过频率与风机常见的故障频率非常接近,很容易引起局部共振。对于此类振动问题,现场很难大幅变各结构固有频率,一般是在紧固各连接面,排除因连接松导致的共振后,通过减小激振力来降低振动水平。
如采用动平衡降低工频激振力,或对叶片开度一致性、叶片不均匀磨损情况等进行检查处理,减小叶片通过频率的激振力。

振动故障处理建议
1)在处理大容量轴流风机异常振动时,除常规的故障频率分析外,还应分析振动的变化特点,如振动随时间、负荷、开度、环境温度等的变化情况,升降速、刚定速及带负荷下的振动情况,现场连接部件差异振动、松紧螺栓振动的测试情况。
2)2次动平衡振动规律差异较大时,应去掉前期所加平衡块,测试2次启机后振动的重合性,找出其本身振动变化的原因。

3)动叶可调轴流风机液压调节结构故障的原因很多,在发现振动与叶片开度关联较大,且出现明显叶片通过频率或工频谐波时,应重点排查液压调节结构松动、磨损等缺陷。





手机站

保存通讯录